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Abstract

We present a study of constraints on pre-ejection dynamical states which cause differential resolution in resonance ejection experiments using
Paul traps with stretched geometry. Both analytical and numerical computations are carried out to elucidate the role of damping and scan rate in
influencing coherence in ion motion associated with the forward and reverse scan.

Adopting the Dehmelt approximation, our analytical study is carried out on adamped, driven Duffing oscillator with positive octopole nonlinearity.
Using the method of multiple scales, we derive approximate slow flow equations which describe the ion motion. The phase portraits generated from
the slow flow equations, in the vicinity of the jump, display two stable equilibria (centers) and an unstable fixed point (saddle). Numerical studies
on the original equation are used to understand the influence of damping and scan rate in causing coherent ion ejection in these experiments.

In the forward scan experiments, for a given damping, low scan rates result in coherent motion of ions of a given mass at the jump point. At
this point, the amplitude and phase of ions of a given mass, starting at different initial conditions, become effectively identical. As the scan rate
is increased, coherence is destroyed. For a given scan rate, increasing damping introduces coherence in ion motion, while decreasing damping
destroys this coherence.

In reverse scan experiments, for a given damping, very low scan rates will cause coherent ion motion. Increasing the scan rate destroys this
coherence.

The effect of damping in reverse scan experiments is qualitatively similar to that in the forward scan experiments, but settling times in the forward
scan are shorter, leading to improved coherence and resolution. For mass spectrometrically relevant scan rates and damping values, significantly
greater coherence is obtained in the forward scan.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction lyzer (consisting of a ring electrode and two end cap electrodes)
oscillate at their secular frequencies, wy,, in the axial and ra-
dial directions. The secular frequencies can be computed by the

expression [1,2]

Bus2
2

where u refers to the axial (z) or radial (#) directions, £2 is the

In this paper we study the dependence of resolution on the
scan direction in resonance ejection experiments in Paul traps
with stretched geometry and in the presence of a buffer gas.
In particular, we show how a forward scan direction constrains
the pre-ejection dynamical states of the ion so as to yield a
coherent motion which in turn leads to good resolution, and

ey
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how a lack of this constraint results in poor resolution spectra
in the reverse scan.

Fragment ions of an analyte gas which are confined within
the cavity of the three electrode geometry Paul trap mass ana-
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angular frequency of the rf drive (applied across the central ring
and the two grounded end cap electrodes) and §, is a parameter
related to the Mathieu parameters a, and g,. 8, can be obtained
using an implicit continuous fraction relationship [1] or more
simply, when g, < 0.4, by the expression [3]

2
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within the pseudopotential well approximation.
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In resonance ejection experiments, a fixed frequency ac exci-
tation having sufficient amplitude is applied across the end cap
electrodes [4—6]. To resonantly eject the ions from the trap, the
secular frequency of the fragment ions is brought into resonance
with the fixed frequency excitation by varying the amplitude of
the rf drive. In the mass spectrometry literature, increasing the
rf amplitude to bring ion secular frequency into resonance with
the ac excitation is referred to as the forward scan experiment,
and decreasing the rf amplitude is referred to as the reverse scan
experiment [7,8].

Mass spectra obtained by resonance ejection in stretched ge-
ometry traps, in the presence of buffer gas, are known to have
high resolution in forward scan experiments and relatively poor
resolution in reverse scan experiments [8]. A few theoretical
studies in the literature have focussed on understanding the de-
pendence of resolution on experimental parameters. Goeringer
etal. [7] developed relations for line width as a function of mass,
scan rate and bath gas pressure. They modelled the system as a
driven harmonic oscillator with damping. Arnold et al. [9], us-
ing a similar expression, derived a relationship for the maximum
possible resolution at high ion mass-to-charge ratio. Finally,
Makarov [10] used a forced, damped Duffing oscillator with
positive cubic nonlinearity (corresponding to the stretched trap
geometry) and he utilized Mitropol’skii’s asymptotic technique
[11] to obtain slow flow equations. The fixed points of these
equations were used to generate a resonance curve, and a study of
that curve, along with detailed numerical simulations, was used
to understand resolution and to obtain expressions for the same.

It is at this point that the present paper hopes to contribute.
Like Makarov [10], we too model the system to consist of posi-
tive octopole nonlinearity, damping and forcing and we consider
ion motion to be within the pseudopotential well approximation
regime where g, < 0.4. We have taken up for investigation the
dependence of resolution on the scan direction through a study of
ion dynamics in the neighborhood of resonance. We will demon-
strate that the observed resolution in the two directions can be
attributed to the constraints on the pre-ejection initial conditions
that ions can possess in the forward and reverse scan. It will be
seen that coherence of ion motion in the forward scan and the ab-
sence of coherence in the reverse scan results in the observation
of differing resolutions in the two directions.

In comparison to Makarov’s work, ours may be viewed as
addressing the following questions. How and when are studies
based on the resonance curve valid in the presence of transient
motion? How do damping, scan rate and scan direction affect
this validity? What are the mechanisms responsible for the dif-
ferential resolutions observed in the forward and reverse scan
experiments? In particular, we use phase portraits of the slow
flow to investigate these questions, thereby obtaining a qualita-
tive understanding that continues beyond Makarov’s treatment.
Finally, full, numerical simulations will bear out the validity of
the insight obtained from our phase portraits.

2. Equation of motion

The equation of motion of ions in the axial direction in a
Paul trap with positive octopole field superposition, damping

and dipolar excitation, within the psuedopotential well approx-
imation, is given by [12]

&z dz 5, 8f , ;4
E—FCE—F(!)OZZ-i-%CUOZZ Z—FSCOSCL)t (3)

where z is the motion of the ion in the axial direction, ¢is the time,
c is the damping coefficient (which arises on account of helium
bath gas), fis the ratio of the weight of octopole superposition
with that of quadrupole superposition, ry is the radius of the trap,
wy; 1s the secular frequency of the ion in the axial direction, w
is the frequency of the dipolar excitation and
Fo= A% @
mro

where e is the charge of electron, m is the mass of the ion, A
is the weight of the dipole component in the field and Vj is the
amplitude of the ac dipolar excitation.

In Eq. (4) we have used the viscous drag model for damping
proposed by Goeringer et al. [7] which has the form

my p e m—+ my,

m + m, kTy, 2g9 * mm,,

where m,, is the mass of the bath gas, & = 0.22 x 1070 Fm? is
the polarizability of the bath gas, g9 = 8.854 x 107!2 F/m is the
permittivity of free space, Ty, is the temperature, p is the pressure
of the bath gas in Pascal and & is the Boltzmann constant.

Use of this model is supported by the observation of Ma-
jor and Dehmelt [13] where it has been recommended that the
viscous drag model could be used when the mass of the ion is
much larger than that of the neutral gas. However, a recent study
by Plass et al. [14] has questioned the validity of this model in
the context of typical commercial ion traps and has instead sug-
gested that an elastic collision model would be more appropriate
for predicting ion behavior. While, for the purpose of individu-
ally accurate predictions, we appreciate the practical point made
by Plass et al. [14], we note that analytically incorporating the
effect of random infrequent collisions poses a challenge beyond
the scope of the present paper.

It needs to be emphasized that in traditional resonance ejec-
tion experiments w in Eq. (3) is in fact kept constant, and what
varies when the rf amplitude is ramped is wy;. In order to mod-
ify Eq. (3) to the conventional form (in which the frequency
of the forcing function is varied) we introduce dimensionless
parameters T = w,t and x = (z/rp) and we obtain

d*x dx 3

— 4 2u— 4+ x+az3x’ = Fcosvr (5)

dz2 dr

where

__¢ (6)
m= 2wy,
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In Eq. (5) the frequency of the forcing function, v, is the ratio
of the excitation frequency to the secular frequency. Thus, since
o (the forcing frequency in Eq. (3)) is held constant, forward
scan experiments will result in decreasing v and reverse scan
experiments will cause v to increase. o3 is the coefficient of
the cubic nonlinearity and its sign will determine the nature
of the nonlinearity. In our study «3 is always positive. From
Egs. (6) and (8), we note that the damping coefficient, u, and
the amplitude of the forcing term, F, will vary with the secular
frequency, wy;.

The equation of motion of the ions in a Paul trap is described
by the Mathieu equation [3]. In this study, however, we will be
using the Duffing equation (Eq. (3)) which is valid in the Dehmelt
approximation region corresponding to g, < 0.4. As an aside, it
will be instructive to understand how the original Mathieu equa-
tion responds to dipolar excitation within the Dehmelt approxi-
mation region. We will do this by examining escape velocity of
ions at an arbitrarily chosen ¢, by a method outlined in Abra-
ham et al. [15]. This study will also give a flavor for the altered
stability conditions experienced by the ions in the presence of
dipolar excitation.

Fig. 1 is a plot of the escape velocity versus ¢,. The escape
velocity plots have been generated by assuming an ideal Mathieu
equation with an additional force term, the equation having the
form

2

d“z 2w
ot (a; +2q, cos2t)z = F cos o7 (10)

The plots have been made along the a, = 0 axis for an ion
trap in which the central ring electrode has a radius of 7 mm. The
drive frequency, £2, has been assumed to be 1 MHz and dipolar
excitation frequency, w, has been fixed at 100 kHz correspond-
ing to a g, value of 0.2829. The initial position and velocity
of the ions, in our simulations, have been chosen as O m and
0.0001 m/s, respectively. This initial velocity is sequentially in-
cremented in our computations and maximum ion amplitude,
for a specified integration time, is estimated. The velocity that
causes ion amplitude to just reach the trap boundary is taken
to be the escape velocity of the ion at the chosen ¢, [15]. The
escape velocity plots in the absence of dipolar excitation (i.e.,
when F' = 0), as well as in the presence of force, F, correspond-
ing to dipolar excitation amplitude, Vg, of 100 and 200 mV, are
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Fig. 1. Escape velocity vs. g;. (1) Unforced equation, (2) V; = 100mV, (3)
Vs =200 mV.

presented in this figure. From Fig. 1 (curve 2), it can be noted
that when an excitation voltage of 100 mV is applied, there is a
decrease in the escape velocity compared to the escape velocity
in the absence of dipolar excitation (curve 1) at the selected ¢, .
When the excitation voltage is increased to 200 mV the escape
velocity reduces to zero, implying that any ion encountering this
condition will be unstable and will escape from the trap. Curve 2
corresponds to the condition generally used in collision induced
dissociation studies and curve 3 is the condition maintained in
resonance ejection experiments.

3. Analytical treatment

We now return to the Duffing equation (Eq. (5)). In order to
study the response of the system to variations in damping, non-
linearity, forcing amplitude and frequency we need to derive an
analytical expression which captures the dynamics of the sys-
tem. In the context of the Duffing oscillator, several perturbation
techniques have been explored in the mathematical literature.
The Lindstedt—Poincaré method and the method of harmonic
balance yield only steady state solutions and in our context will
not provide an insight into ion dynamics. Two other techniques
which can provide us both the transient as well as steady state
response are the method of averaging and method of multiple
scales. In our study we have used the method of multiple scales
[16—-19] to derive the relevant slow flow equations. We assume
that the coefficients u, a3, and F are small. To characterize the
smallness of these coefficients, Eq. (5) may be modified as [17]
d’x dx 3
dtz+x_e<—2p,dr—a3x ~|—Fcosvr> (11)
where € is a book keeping parameter. It is also assumed here that
the perturbed frequency is close to the natural frequency of the
ideal system (in our case v = 1) and can be represented as

V=1+¢€s (12)

where § is a detuning parameter. In resonance ejection experi-
ments when the rf amplitude is ramped, we may consider § to
be a function of slow time, 7}, and write

8 =4&(T) 13)

where T7 = et (discussed below).
Substituting Eq. (12) in Eq. (11) we get
d? d
—x—i—vzx:e 8x—2u—x—a3x3+Fcosvt (14)
dz? dr
In the method of multiple scales we define
To=1T =¢t,---

where Ty is the fast time scale and T7, . .. are slow time scales.
We assume the solution to Eq. (14) to have the form

x(t) = X(To, T, ...) (15)
where X is assumed to have a form

X(To, T, .. )=Xo(To, T, .. )+eX1(To, T1, .. )+ -+ (16)
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Further details are summarized in Appendix A. The net result
is

X~ Acosvt+ Bsinvt a7

and we get

. 1

A= 8—(—8/¢AV — 48(7)B + 303A%B + 3a3BY) (18)
v

1
B = o (~8uBv+45(D)A - 3a3AB? —3a3A% +4F) (19
V

by putting € = 1. Egs. (18) and (19) are the slow flow equations
from which we can determine the fixed points of the system. It
can be observed that A and B are dependent on the damping
(u), nonlinearity («3) and forcing (F) as well as the detuning
(8). We will be using these equations to generate phase portraits
to understand the mechanism of destabilization in resonance
ejection experiments.

3.1. Numerical verification

The validity of the slow flow equations obtained above (Eqs.
(18) and (19)) to describe the behavior of the original system
will be verified by two calculations. In the first, for a given point
on the phase portrait, slow changes in the amplitude predicted
by the slow flow will be compared with the variation in the
amplitude obtained by the integration of the original equation
(Eq. (5)). In the second, we compare amplitude response curves
obtained from the slow flow equations and the original equation.

The slow flow equations (Egs. (18) and (19)) are two first
order differential equations in the state variables A and B. The
time evolution of the solution of the slow flow equations (which
is related to the motion of ions) from any initial point can be
plotted as a curve on the A-B phase plane and is called a trajec-
tory. A number of such trajectories plotted together is called a
phase portrait [20,21]. To generate phase portraits we integrate
the slow flow equations for a large number of arbitrarily chosen
initial conditions and plot B against A in each case on the same
graph.

Fig. 2(a) presents the phase portrait obtained from the slow
flow at v = 1.2 (6 = 0.44) for an undamped condition for an ion
of mass 78 Th, an excitation voltage amplitude of 500 mV and
for +5% octopole (f) superposition. The slow flow equations are
integrated repeatedly for several different initial conditions and
phase portraits are generated by plotting A on the x-axis and B
on the y-axis. We present this phase portrait in Fig. 2(a) which
displays two stable equilibria (centers) marked X and Y, and an
unstable equilibrium (saddle) marked Z.

For generating the time response plot (Fig. 2(b)) we choose
initial conditions A = —1.091 and B = 0.3146 corresponding
to the point P close to the saddle in Fig. 2(a). For plotting the
time response of the original equation we use Eq. (17) to ob-
tain the corresponding initial conditions as x(0) = —1.091 and
x(0) = 0.3775. From the phase portrait it can be seen that the
trajectory first goes around the low amplitude solution before it
swings around the larger amplitude solution. This behavior is
reflected in the time response plots in Fig. 2(b). In Fig. 2(b) we
also superimpose the variation in amplitude, R = +/ A2 + B2,
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Fig.2. (a) Phase portrait of the system (Eqgs. (18) and (19)) atv = 1.2 (§ = 0.44),
Vs =500 mV, a3 = 0.4, u = 0. (b) The time response from the original equation
and amplitude from the slow flow for the initial condition corresponding to point
P on the phase portrait.

obtained by integrating the slow flow equations, as a heavy line.
This comparison bears out the validity of the slow flow in ap-
proximating the behavior of the original equation.

Note that although the analysis is formally valid for very small
6 and a3, the final match is good even for somewhat large values
like § = 0.44, a3 = 0.4. For smaller values of these parameters,
the match will be better.

The phase portrait generated in Fig. 2(a) was for an undamped
system and consequently the stable solutions appear as centers
in the A—B phase space of Egs. (18) and (19). In the presence of
a buffer gas (damping), when i > 0, the trajectories in the A-B
phase space will eventually settle to one of the fixed points, as
shown in Fig. 3.

A second verification of the accuracy of the slow flow to de-
scribe our original system is studied through amplitude response
curves. An amplitude response curve obtained from the original
nonlinear equation (Eq. (5)) is compared with the curve obtained
from the slow flow (Egs. (18) and (19)) in Fig. 4. These curves are
generated for an ion of mass 78 Th, pressure of 0.1 Pa, an excita-
tion voltage amplitude of 500 mV and for +5% octopole super-
position. The amplitude response curve of the original equation
is generated by a simple numerical arc-length based continu-
ation method used by Nandakumar and Chatterjee [22] and is
shown by the continuous curve. For obtaining the amplitudes
from the slow flow we use R = v/ A2 + B2, where A and B are
equilibrium values of the first order slow flow equations for dif-
ferent values of v. The values obtained are indicated by ‘x’. The
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Fig. 3. Phase trajectories of slow flow equations generated for mass 78 Th,
Vs = 500mV, pressure = 1 Pa and +5% octopole superposition at v = 1.2.

trap boundary is indicated by a horizontal line at R ~ (.71 cor-
responding to zo/ro. The amplitudes determined from the slow
flow equations closely match those obtained from the original
equation, validating the slow flow.

These curves also display the well known jump event ob-
served in systems with cubic nonlinearities [17,23,24]. Jumps
are known to occur at the vertical tangents to these curves. In
the context of resonance ejection experiments, in the forward
scan, at the vertical tangent in the neighborhood of M (Fig. 4),
the solution jumps from the lower curve towards the amplitude
determined by the upper curve (this has also been pointed out by
Makarov [10]) and ions get detected at the trap boundary at this
jump point. In reverse scan experiments, however, ion detection
occurs when the ion amplitude corresponding to the upper curve
reaches the trap boundary and here there is no sudden change in
ion amplitude as it happens in the forward scan experiment.

Trap boundary

Forward |
scan |

Fig.4. Amplitude response curve of an ion of mass 78 Th with pressure = 0.1 Pa
and +5% octopole superposition. (—) for Vs = 500mV, (---) for Vs = 1.5V,
() denotes the amplitude obtained from the slow flow equations.

AlsoshowninFig. 4 is the amplitude response curve for larger
Vs, to demonstrate that the magnitude of the jump depends on the
applied excitation voltage V;. A larger V; results in a larger jump
(see dotted curve in Fig. 4, made for V; = 1.5V). Since very
small V5 will not make the ion amplitude jump across the trap
boundary, a minimum Vj is required for obtaining a spectrum in
the forward scan.

4. Results and discussion

It needs to be pointed out that Eq. (5), the Duffing equation,
was developed using the pseudopotential well approximation
which is valid only for g, < 0.4. In that sense the results we
present below are useful only within this range. However, since
the discussion we present is qualitative in nature we hope this
may provide an insight into resonant ion dynamics even at higher
q values.

As an aside, we point out that the Duffing equation has on
occasion been seen to provide useful quantitative information at
values of g, greater than 0.4. An example of this is the study of
Makarov [10] who used a Duffing equation to develop expres-
sions for line width and resolution which provided very good
matches with experimental results at g, = 0.86.

4.1. Phase portraits

We now turn to investigate coherence. For this, we first
present the phase portraits derived from the slow flow equa-
tions in the region close to resonance. Fig. 5 presents the phase
portraits at two different values of v on the amplitude response
curve. These plots have been made for a mass of 78 Th, ex-
citation voltage amplitude of 500mV and for +5% octopole
superposition in the absence of damping.

Fig. 5(a) has been plotted for v = 0.8 corresponding to
8 = —0.36. At this detuning, there exists only one (stable) equi-
librium point! corresponding to the upper curve of the amplitude
response plot. Fig. 5(b) has been plotted for v = 1.2 correspond-
ing to § = 0.44. At this detuning, three equilibrium points exist,
of which two are stable and the third is unstable. The phase
portraits for better understanding, cover amplitudes much larger
than the trap dimension. Actually, for Fig. 5(b), the trap physi-
cally restricts ion motion amplitudes and so all ion motions are
close to the point X. Similarly for Fig. 5(a), ion motion is close to
the unique periodic solution. In the presence of damping, more-
over, all solutions will settle on to the respective equilibrium
points (periodic solutions in terms of the original variable z).

Six more thumb-nail phase portraits are presented in Fig. 6
corresponding to different v values. Of these, (a) and (b) corre-
spond to regions where the value of v is smaller than the v value
at the jump point; (c) corresponds to v value at the jump point
and (d), (e) and (f) are the plots for higher v values. We empha-
size that these phase portraits are for zero damping as well as
six independently fixed values of §.

! An equilibrium of the slow flow represents a periodic solution in the original
z variable.
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Fig. 5. Phase portraits of the system (Egs. (18) and (19)) for V; = 500 mV, a3 =
0.4, 1 = 0 (no damping) at (a) v = 0.8 (§ = —0.36) (b) v = 1.2 (§ = 0.44).
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In the phase portraits, at large v there are three equilibrium
points. We have shaded an area of the phase space enclosed
by a homoclinic orbit. All trajectories in this area are closed
curves representing periodic solutions in A and B (and peri-
odically modulated solutions in the original variable z). In the
presence of damping, essentially all of these solutions will set-
tle to equilibrium solution in the middle of the shaded region
(amplitude corresponding to the lower curve of the amplitude
response plot). As § varies quasistatically, from a high value
to lower values (implying v varies from higher values to lower
values), the area of the shaded region decreases. At the jump
point, the area of the shaded region has gone to zero and for
an infinitesimally smaller § the phase portrait displays a single
periodic solution with an amplitude corresponding to the upper
curve of the amplitude response plot.

In contrast, phase portraits (a) and (b) in Fig. 6 do not display
any qualitative change in structure.

4.2. Mass resolution

There are some interesting characteristics associated with the
jump point which provide an insight into the improved resolu-
tion observed in forward scan experiments. One feature has been
presented in the discussion above in relation to Fig. 6, namely,
at the jump point ions of the same mass, having different initial
conditions at the start of the experiment, have the same ampli-
tude and these ions eject from the trap simultaneously. Another

h(d) o
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B B
12 5
1.2 1871
A A 1.7
(e) oA A 2.2
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0 .
0.8 0.9
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Fig. 6. Amplitude response plots and phase portraits plotted at (a) v = 0.8, (b) v = 1.0, (c) v =1.08, (d) v =1.09, (e) v = 1.1, () v = 1.2.
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Fig. 7. (a) Amplitude response curves of ions of mass 78 Th and 79 Th with
pressure = 0.1 Pa and +5% octopole superposition and Vg = 500 mV. (b) Mag-
nified region close to the jump point.

feature of this curve can be seen in Fig. 7 which has been plotted
for identical experimental conditions for two different masses,
78 Th and 79 Th. In Fig. 7(a) the frequency response curves
appear to be indistinguishable but the clear separation of the
curves is evident in Fig. 7(b) which shows a magnified view of
a portion near the jump point of Fig. 7(a). Here, the jump points
corresponding to the two masses are labelled J7g and J79. This
separation determines the ultimate resolution achievable by the
mass analyzer. In practice, however, the resolution will be de-
termined by the actual spread in amplitude of the two adjacent
masses at the time of jump and, this in turn, will be influenced
for a given pressure of the bath gas, by the scan rate.

4.3. Damping, scan rate, and coherence

So far, we have studied the phase portrait with § = constant
(no scan rate) and in the absence of damping. Consider, now,
the effect of some damping: it merely causes trajectories within
the shaded regions drawn in Fig. 6 to collapse on to the equilib-
rium point (we ignore delicate issues in resolving what happens
to trajectories very close to the original homoclininc orbit, as
borderline cases will at most involve a few ions only). As will
be seen in the numerical simulations below, the magnitude of
damping will determine this rate of collapse and thus will influ-
ence resolution in both the forward as well as reverse directions.

Let us now turn to scan rate. Suppose, in addition to damping,
there is a very slow but nonzero scan rate. The damped trajec-
tories still have enough time to collapse on to the equilibrium

point and then quasistatically follow the equilibrium point as it
moves along the appropriate branch of the amplitude response
curve (upper or lower, depending on whether it is a reverse or
forward scan, respectively). These trajectories therefore remain
effectively phase locked with the forcing; all of them have ef-
fectively the same amplitude and phase, i.e., the ion motions
will be coherent; and all are ejected and detected virtually at the
same instant, giving good resolution in the spectrum in both di-
rections. However, in traditional resonance ejection experiments
such extremely slow scan rates have not been used since very
slow scan rates will result in large time delays before detection
of high mass ions and this will lead to deterioration of the quality
of the spectrum.

Imagine, therefore, we increase the scan rate. There is now a
more complex dynamics associated with the ion trajectories (as
may be seen by studying the slow flow with a time-varying 4,
something we avoid here to maintain focus on the issue of pri-
mary interest). Analytically elucidating this complex dynamics
would require sophisticated analysis not attempted here; rather,
we will use direct numerical integration to elucidate these phe-
nomena in the next section. Here, we present a simple linearized
analysis near the periodic solutions which shows that the ap-
proach towards the coherent motion is faster during forward

scan compared to reverse scan.
A

Defining ® = (B

) , Egs. (18) and (19) can be written as

O = f(O®) (20)

(%)

1
8—(—8uAv — 48(7)B + 303A> B+3a3 B%)
V

where

f(®)

1
o, (C81BUHAN(DA — 303AB? — 3a3A3+4F)

@
A*

Let ©@* = « | be a fixed point (with § held constant) of

B

the above system, i.e., f(®*) = 0. For any perturbation about
the fixed point ®*, ® = O* + &, we have [25]

£~ J (22)
where J is the Jacobian of f(®) given by
o of
dA 0B
J = 23
W b =
dA 0B

From Eq. (21) we get the Jacobian at ©®* as

1 ( —8uv + 6a3A*B*

S —48+9a3 B*2+3a3A*2
© 8v \ 48 — 33 B*2—9a3A*2

—8uv — 6a3A*B*
(24)
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The real part of the eigenvalues of the Jacobian will determine
the rate of approach of (A, B) to the fixed point (A*, B*). The
characteristic equation of J is

A2 —tr(J)A + det(J) =0 (25)
and so

2 _
RO \/(tr(;)) 4det(J) 26)

Assuming low damping, solutions will spiral into (A*, B¥),
therefore A is complex. The real part of A is given by

tr(J) 16pv
— N 27
2 6o M @7
But
C cv
== (28)
w0z w

Since ¢ and w are constants in Eq. (28), the rate of approach of
amplitude of ion motion to the fixed point (A*, B*), is propor-
tional to v. In the forward and reverse scan experiments, the v
values are close to each other, with v being larger for the forward
scan case. However, the small difference in v values is amplified
by the larger times involved (many cycles of forcing). Therefore,
damping-induced coherence is greater for the forward scan.

Finally, consider the case where the scan rate is high enough
to be dynamically far more relevant than the damping. The qua-
sistatic behavior referred to earlier eventually disappears. In such
cases, phase locking cannot be expected even in an approximate
sense and even in the forward scan direction there will be loss
of coherence in ion motion. This occurs primarily due to rate of
decrease of amplitude due to damping being much smaller than
the scan rate thus resulting in ions not having sufficient time
to settle to the stable solution. This, too, will be numerically
studied below.

4.4. Numerical simulations

The numerical integration of the original equation (Eq. (5))
has been carried out to study the effect that damping and scan
rate have on the resolution in the two scan directions. This study
will investigate the response of our system for two initial con-
ditions, viz., (x(0), %(0)) corresponding to (0.1, 0) and (0.25, 0).
In all the plots the y-axis corresponds to the nondimensionalized
amplitude. Ejection will occur at x & 0.71 on this scale. Three
damping conditions have been considered and the scan rate is
introduced by expressing v as

v=y 4yt (29)

where vy is the starting value of v, y is a dimensionless number
akin to the scan rate and 7 is dimensionless time. For forward
scan the sign of y is negative and we fix vy as 3 and for reverse
scan y is positive and vy is chosen as 0.1.

The abscissa in these plots correspond to vy + 2yt. We briefly
explain this choice since in the amplitude response plots in Figs.
4 and 6, the abscissa is v. To justify this change of independent
variable we think of the forcing term F cos(vt) in Eq. (5) as
F cos(6). Then the abscissa of the amplitude response curve

2

1

Forward
scan

1 2 3 1 2 3
V0+2Y‘E

1.18 1.185 1.19 1.195 1.2 1205 1.21 1.215 1.22
(© Vot 2971
Fig. 8. Time trajectories in the forward scan for initial conditions (a) (0.1, 0) and
(b) (0.25, 0), in the absence of damping. v = 3, y = —0.0005. The trajectories
for the two initial conditions in the vicinity of the trap boundary (x ~ 0.7) are
presented in (c). Light curve corresponds to initial condition (0.1, 0) and dark
curve corresponds to initial condition (0.25, 0).

should really be 9, i.e., the rate of change of phase in the forcing
itself. During a scan, we have

v=yy+yr, V=1, (30)
and so
9=v+vt=v0+2yt. (€19

We have, therefore, plotted vy + 2yt on the abscissa of the time
response plots.

We first investigate the effect of damping. For this we fix
y at 0.0005. Figs. 8 and 9 are plots for forward and reverse
scan, respectively, for no damping. Figs. 10-12 are the plots for
damping corresponding to He bath gas pressure of 0.1 and 1 Pa,
respectively. In all these figures subplot (a) corresponds to initial

05 05

x 0 x 0
R

—05| > -05

-1
02 04 06 08 1 02 04 06 08 1

(@) Vot 271 (b)

Vot 271

1.13 1.135 1.14 1.15
Vot+t271

Fig. 9. Time trajectories in the reverse scan for initial conditions (a) (0.1, 0) and
(b) (0.25, 0), in the absence of damping. vp = 0.1, y = 0.0005. The trajectories
for the two initial conditions in the vicinity of the trap boundary (x ~ 0.7) are
presented in (c). Light curve corresponds to initial condition (0.1, 0) and dark
curve to initial condition (0.25, 0).
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2 2
1 1
> 0 *x 0
Forward
= “scan =
-2 -2
1 2 3 1 2 3
(a) v0+2yt (b) v0+2yt

T T T T

1.15 1.16 1.17 1.18 1.19 1.2

(c) Vot 271

Fig. 10. Time trajectories in the forward scan for initial conditions (a) (0.1, 0)
and (b) (0.25, 0), He gas pressure 0.1 Pa, vy = 3, y = —0.0005. The trajectories
for the two initial conditions in the vicinity of the trap boundary (x =~ 0.7) are
presented in (c). Continuous curve corresponds to initial condition (0.1, 0) and
%’ to initial condition (0.25, 0).

condition (0.1, 0), subplot (b) corresponds to initial condition
(0.25, 0) and in subplot (c) we have provided the magnified
portion of the plots in (a) and (b) where the amplitude of ion
motion crosses the trap boundary. The traces shown in Figs. 9, 11
and 12 for large initial conditions are similar to those presented
by Franzen [26] to explain ejection delays caused by multipole
superposition in mass selective ejection at the 8, = 1 stability
boundary.

In the absence of damping, trajectories in Figs. 8 and 9 dis-
play no coherence in both forward as well as reverse scan. Ions
with two different initial conditions, at the start of the experi-
ment, encounter the trap boundary at different values of v. The
situation is dramatically altered in the forward scan in the pres-

1 1
0.5 0.5
= o} x 0
-0.5 Revers% -0.5
scan §
0.2 04 06 08 1 02 04 06 08 1
(a) Vo* 27T (b) Vot 27T
0.5 R
> or
-0.5
1.08 1.085 1.09 1.095 1.1 1.105 1.1
(c) Vot2yt

Fig. 11. Time trajectories in the reverse scan for initial conditions (a) (0.1, 0)
and (b) (0.25, 0), He gas pressure 0.1 Pa, vy = 0.1, y = 0.0005. The trajectories
for the two initial conditions in the vicinity of the trap boundary (x ~ 0.7) are
presented in (c). Light curve corresponds to initial condition (0.1, 0) and dark
curve to initial condition (0.25, 0).

1 1

0.5 0.5
x 0 x 0
05 Reverse > 05

scan

02 04 06 08 1
(a) Vo +271 (b)

02 04 06 08 1
Vo+ 27T

1 T " T T T

-1 . . . L .
1.07 1.075 1.08 1.085 1.09 1.095 1.1
(© Vo + 271

Fig. 12. Time trajectories in the reverse scan for initial conditions (a) (0.1, 0)
and (b) (0.25, 0), He gas pressure 1 Pa, vy = 0.1, y = 0.0005. The trajectories
for the two initial conditions in the vicinity of the trap boundary (x ~ 0.7) are
presented in (c). Light curve corresponds to initial condition (0.1, 0) and dark
curve to initial condition (0.25, 0).

ence of 0.1 Pa He bath gas pressure. As anticipated from earlier
discussions, motion of ions of two different initial conditions
fall in step, and they have coherent motion at the approach to
the trap boundary. This is demonstrated by the indistinguishable
trajectories of the two different initial conditions shown in Fig.
10(c). In the reverse scan, at this pressure, there continues to
be lack of coherence as seen in Fig. 11(c). When the He bath
gas pressure is further increased to 1 Pa, ion motion in the for-
ward scan continues to be coherent. Although the ion motion in
the reverse scan displays greater coherence at 1 Pa when com-
pared to the 0.1 Pascal case, there is still some separation in the
trajectories corresponding to the two initial conditions as seen
in Fig. 12.

Forward
scan

1 1.06 1.1 1.15 1.2

(c) v0+2}'1:

Fig. 13. Time trajectories in the forward scan for initial conditions (a) (0.1, 0)
and (b) (0.25, 0), He gas pressure 0.1 Pa, vy = 3, y = —0.0051. The trajectories
for the two initial conditions in the vicinity of the trap boundary (x ~ 0.7) are
presented in (c). Light curve corresponds to initial condition (0.1, 0) and dark
curve to initial condition (0.25, 0).
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To investigate the effect of scan rate, we consider increased
scan rate of y = 0.0051, corresponding to He bath gas pressure
of 0.1 Pa. The time trajectories are presented in Fig. 13. From
a comparison of Fig. 10 (which was plotted for y = 0.0005)
and Fig. 13 it is evident that increasing scan rate has the effect
of destroying coherence in the forward direction as has been
suggested in our earlier discussion.

5. Conclusions

The motivation of this paper was to understand constraints on
the pre-ejection dynamics of ions in the forward and reverse scan
resonance ejection experiments. Both analytical and numerical
computations have been carried out to understand the cause for
the variation in resolution of mass spectra observed in the two
scan directions. For our analytical study, ion motion was mod-
elled as a damped, driven Duffing oscillator with positive cubic
nonlinearity and, using the method of multiple scales, slow flow
equations were derived. These slow flow equations were vali-
dated using numerical simulations. Numerical studies have also
been carried out on the original Duffing equation to support our
qualitative conclusions obtained from the phase portraits.

First confining attention to the amplitude response curve (as
done by Makarov [10]) it was observed that the mechanisms
of ion ejection in the two scan directions are different. In the
forward scan experiment, as previously noted by Makarov, ejec-
tion occurs when the ions of a given mass encounter the jump
point. At this point, a sudden change in amplitude of ions causes
them to get ejected from the trap. In reverse scan experiment, we
point out that ion ejection occurs not on account of any jump,
but because ion amplitude grows steadily and reaches the trap
boundary.

We have, further, studied transient motions away from the
amplitude response curve. The role of both damping and scan
rate in bringing about coherence in ion motion in the two scan
directions has been presented. It is seen that increasing damp-
ing leads to coherent ion motion for both scan directions, and
decreasing damping leads to loss of coherence. Similarly, very
low scan rates result in coherent ion motion in both scan di-
rections and increasing the scan rate destroys the coherence in
both directions. However, this effect is larger for reverse scan
compared to forward scan. This is because the rate of settling of
ions to the periodic motion (coherence) is faster in the forward
direction compared to the reverse scan direction.

Finally, we briefly comment on the mechanism proposed in
the experimental study reported in Williams et al. [8]. In this pa-
per, they have used the fact that octopole superposition causes
the secular frequency of ions to be related to ion oscillation
amplitude. Thus in forward scan experiments, the ion secular
frequency “runs into” the dipolar excitation frequency caus-
ing ejection compacted in time which results in spectra with
good resolution. In reverse scan, as ion oscillation amplitude
increases, the secular frequency moves away from the dipolar
excitation frequency resulting in spectra having poor resolution.
The mechanism we have proposed in the present study does not
explicitly invoke this amplitude frequency relationship but in-
stead focuses on the constraints on pre-ejection dynamical states

to explain the differential resolution. Nevertheless, a shadow of
the discussion in Williams et al. [8] may be seen in our discus-
sion in that in one direction a jump is encountered while in the
other direction it is not.
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Appendix A. Details of multiple scales analysis

We present here the steps involved in the multiple scales anal-
ysis of Eq. (11) given in Section 3. Having defined
To=1TH =c¢€t,...

the derivatives with respect to t will become

d¢) a0 aC) 2

dr a1y +68T1 + O (D
() %) () 2

= = 26+ O0E) (A2)

Substituting Egs. (16), (A.1), (A.2) in Eq. (14) and expanding
the cubic term, we obtain

PX0 | pxgre |ZX 4oy, 10 X0 gy
— Vv €| —5 V -
o1? T arg " oner 0

+ ZMST + a3 Xy — Fcos(vTp)| +O(e) =0 (A3)
0

Collecting the coefficients of €°, € in Eq. (A.3) we have

32X0

2
+v°Xo=0 A4
o2 0 (A.4)
?*xX, o, #Xo
v'X1=-2 §X
a2 aTooT; 00
0Xo 3
—2u—— — a3 Xy + F cos(vTp) (A.5)
YA
We consider the general solution to Eq. (A.4) in the form
Xo = A(Ty)cosv Ty + B(Ty)sinv Ty (A.6)

where A and B are arbitrary functions of slow time, 7. Substi-
tuting Eq. (A.6) into Eq. (A.5) we get

32X1
8T02

+ 12X 2% sin(v Tp) + Zd—B cos(v Tp)
' an R 0
— 8 A cos(vTp) — 6 B sin(vTy) — 2 A sin(v Tp)v

1
+ 2u B cos(v Tp)v + Za3A3 cos(3v Tp)

l 3 . 3 3
— ZogB sin(3v Tp) + Za3A cos(v Tp)
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3 3 . 3 2 .
+ ZagB sin(v Tp) + ZO(3A Bsin(3vg)
- Za3AB cos(3vTy) + Za3A B sin(v Tp)

3
+ ZongBz cos(v Ty) — F cos(v Tp) = 0 (A7)

Eq. (A.7) is a nonhomogeneous equation in X1. The terms in-
volving sin(v7Ty) and cos(vTp) will lead to secular terms (terms
whose amplitude grows with time) in the particular solution. In
order to eliminate the secular terms from the solution we set the
coefficients of sin(v7Ty) and cos(v7Ty) to zero. When we do so we
get the following equations which are the slow flow equations
at O(¢) as

dA 1
—— = —(—8Av —48(T))B + 303A’B +3:3B%)  (A.8)
dTy 8v
dB 1 5 3
—— = —(—8uBv +48(T))A — 3a3AB% — 3a3A° + 4F)
dT) 8v
(A.9)
From Eq. (A.1), we have
A=A 04 A b@ (A.10)
= —— = — €— € .
dr a7y a1y
and
398 _ 98 9B 0@ (A1)
= — = — €— € .
dr Ty 0T
Since the A and B are not functions of T, we have
A= Si(—SpLAv — 48(1)B + 303 A2B + 303 B%) (A.12)
v
B:gi(—8MBv+48(r)A —303AB? — 3a3A3+4F)  (A.13)
v
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