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bstract

We present a study of constraints on pre-ejection dynamical states which cause differential resolution in resonance ejection experiments using
aul traps with stretched geometry. Both analytical and numerical computations are carried out to elucidate the role of damping and scan rate in

nfluencing coherence in ion motion associated with the forward and reverse scan.
Adopting the Dehmelt approximation, our analytical study is carried out on a damped, driven Duffing oscillator with positive octopole nonlinearity.

sing the method of multiple scales, we derive approximate slow flow equations which describe the ion motion. The phase portraits generated from
he slow flow equations, in the vicinity of the jump, display two stable equilibria (centers) and an unstable fixed point (saddle). Numerical studies
n the original equation are used to understand the influence of damping and scan rate in causing coherent ion ejection in these experiments.

In the forward scan experiments, for a given damping, low scan rates result in coherent motion of ions of a given mass at the jump point. At
his point, the amplitude and phase of ions of a given mass, starting at different initial conditions, become effectively identical. As the scan rate
s increased, coherence is destroyed. For a given scan rate, increasing damping introduces coherence in ion motion, while decreasing damping
estroys this coherence.

In reverse scan experiments, for a given damping, very low scan rates will cause coherent ion motion. Increasing the scan rate destroys this
oherence.

The effect of damping in reverse scan experiments is qualitatively similar to that in the forward scan experiments, but settling times in the forward
can are shorter, leading to improved coherence and resolution. For mass spectrometrically relevant scan rates and damping values, significantly

reater coherence is obtained in the forward scan.

2006 Elsevier B.V. All rights reserved.
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. Introduction

In this paper we study the dependence of resolution on the
can direction in resonance ejection experiments in Paul traps
ith stretched geometry and in the presence of a buffer gas.

n particular, we show how a forward scan direction constrains
he pre-ejection dynamical states of the ion so as to yield a
oherent motion which in turn leads to good resolution, and
ow a lack of this constraint results in poor resolution spectra

n the reverse scan.

Fragment ions of an analyte gas which are confined within
he cavity of the three electrode geometry Paul trap mass ana-
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yzer (consisting of a ring electrode and two end cap electrodes)
scillate at their secular frequencies, ω0u, in the axial and ra-
ial directions. The secular frequencies can be computed by the
xpression [1,2]

0u = βuΩ

2
(1)

here u refers to the axial (z) or radial (r) directions, Ω is the
ngular frequency of the rf drive (applied across the central ring
nd the two grounded end cap electrodes) and βu is a parameter
elated to the Mathieu parameters au and qu. βu can be obtained
sing an implicit continuous fraction relationship [1] or more
imply, when qu < 0.4, by the expression [3]
u =
√

au + q2
u

2
(2)

ithin the pseudopotential well approximation.
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In resonance ejection experiments, a fixed frequency ac exci-
ation having sufficient amplitude is applied across the end cap
lectrodes [4–6]. To resonantly eject the ions from the trap, the
ecular frequency of the fragment ions is brought into resonance
ith the fixed frequency excitation by varying the amplitude of

he rf drive. In the mass spectrometry literature, increasing the
f amplitude to bring ion secular frequency into resonance with
he ac excitation is referred to as the forward scan experiment,
nd decreasing the rf amplitude is referred to as the reverse scan
xperiment [7,8].

Mass spectra obtained by resonance ejection in stretched ge-
metry traps, in the presence of buffer gas, are known to have
igh resolution in forward scan experiments and relatively poor
esolution in reverse scan experiments [8]. A few theoretical
tudies in the literature have focussed on understanding the de-
endence of resolution on experimental parameters. Goeringer
t al. [7] developed relations for line width as a function of mass,
can rate and bath gas pressure. They modelled the system as a
riven harmonic oscillator with damping. Arnold et al. [9], us-
ng a similar expression, derived a relationship for the maximum
ossible resolution at high ion mass-to-charge ratio. Finally,
akarov [10] used a forced, damped Duffing oscillator with

ositive cubic nonlinearity (corresponding to the stretched trap
eometry) and he utilized Mitropol’skii’s asymptotic technique
11] to obtain slow flow equations. The fixed points of these
quations were used to generate a resonance curve, and a study of
hat curve, along with detailed numerical simulations, was used
o understand resolution and to obtain expressions for the same.

It is at this point that the present paper hopes to contribute.
ike Makarov [10], we too model the system to consist of posi-

ive octopole nonlinearity, damping and forcing and we consider
on motion to be within the pseudopotential well approximation
egime where qz < 0.4. We have taken up for investigation the
ependence of resolution on the scan direction through a study of
on dynamics in the neighborhood of resonance. We will demon-
trate that the observed resolution in the two directions can be
ttributed to the constraints on the pre-ejection initial conditions
hat ions can possess in the forward and reverse scan. It will be
een that coherence of ion motion in the forward scan and the ab-
ence of coherence in the reverse scan results in the observation
f differing resolutions in the two directions.

In comparison to Makarov’s work, ours may be viewed as
ddressing the following questions. How and when are studies
ased on the resonance curve valid in the presence of transient
otion? How do damping, scan rate and scan direction affect

his validity? What are the mechanisms responsible for the dif-
erential resolutions observed in the forward and reverse scan
xperiments? In particular, we use phase portraits of the slow
ow to investigate these questions, thereby obtaining a qualita-

ive understanding that continues beyond Makarov’s treatment.
inally, full, numerical simulations will bear out the validity of

he insight obtained from our phase portraits.
. Equation of motion

The equation of motion of ions in the axial direction in a
aul trap with positive octopole field superposition, damping

F

ν

Mass Spectrometry 261 (2007) 159–169

nd dipolar excitation, within the psuedopotential well approx-
mation, is given by [12]

d2z

dt2 + c
dz

dt
+ ω2

0zz + 8f

r2
0

ω2
0zz

3 = −Fs cos ωt (3)

here z is the motion of the ion in the axial direction, t is the time,
is the damping coefficient (which arises on account of helium
ath gas), f is the ratio of the weight of octopole superposition
ith that of quadrupole superposition, r0 is the radius of the trap,
0z is the secular frequency of the ion in the axial direction, ω

s the frequency of the dipolar excitation and

s = eA1Vs

mr0
(4)

here e is the charge of electron, m is the mass of the ion, A1
s the weight of the dipole component in the field and Vs is the
mplitude of the ac dipolar excitation.

In Eq. (4) we have used the viscous drag model for damping
roposed by Goeringer et al. [7] which has the form

= mn

m + mn

p

kTb

e

2ε0

√
α

m + mn

mmn

here mn is the mass of the bath gas, α = 0.22 × 10−40 F m2 is
he polarizability of the bath gas, ε0 = 8.854 × 10−12 F/m is the
ermittivity of free space, Tb is the temperature, p is the pressure
f the bath gas in Pascal and k is the Boltzmann constant.

Use of this model is supported by the observation of Ma-
or and Dehmelt [13] where it has been recommended that the
iscous drag model could be used when the mass of the ion is
uch larger than that of the neutral gas. However, a recent study

y Plass et al. [14] has questioned the validity of this model in
he context of typical commercial ion traps and has instead sug-
ested that an elastic collision model would be more appropriate
or predicting ion behavior. While, for the purpose of individu-
lly accurate predictions, we appreciate the practical point made
y Plass et al. [14], we note that analytically incorporating the
ffect of random infrequent collisions poses a challenge beyond
he scope of the present paper.

It needs to be emphasized that in traditional resonance ejec-
ion experiments ω in Eq. (3) is in fact kept constant, and what
aries when the rf amplitude is ramped is ω0z. In order to mod-
fy Eq. (3) to the conventional form (in which the frequency
f the forcing function is varied) we introduce dimensionless
arameters τ = ω0zt and x = (z/r0) and we obtain

d2x

dτ2 + 2μ
dx

dτ
+ x + α3x

3 = F cos ντ (5)

here

= c

2ω0z

(6)

3 = 8f (7)

F
= s

ω2
0zr0

(8)

= ω

ω0z

(9)



al of

I
o
ω

s
e
t
o
E
t
f

b
u
a
w
t
m
i
h
s
d

v
e
f

t
d
e
i
o
0
c
f
c
t
e
w
i

F
V

p
t
d
i
W
v
c
c
d
r

3

s
l
a
t
t
T
b
n
w
r
s
[
t
s

w
t
i

ν

w

N. Rajanbabu et al. / International Journ

n Eq. (5) the frequency of the forcing function, ν, is the ratio
f the excitation frequency to the secular frequency. Thus, since

(the forcing frequency in Eq. (3)) is held constant, forward
can experiments will result in decreasing ν and reverse scan
xperiments will cause ν to increase. α3 is the coefficient of
he cubic nonlinearity and its sign will determine the nature
f the nonlinearity. In our study α3 is always positive. From
qs. (6) and (8), we note that the damping coefficient, μ, and

he amplitude of the forcing term, F, will vary with the secular
requency, ω0z.

The equation of motion of the ions in a Paul trap is described
y the Mathieu equation [3]. In this study, however, we will be
sing the Duffing equation (Eq. (3)) which is valid in the Dehmelt
pproximation region corresponding to qz < 0.4. As an aside, it
ill be instructive to understand how the original Mathieu equa-

ion responds to dipolar excitation within the Dehmelt approxi-
ation region. We will do this by examining escape velocity of

ons at an arbitrarily chosen qz by a method outlined in Abra-
am et al. [15]. This study will also give a flavor for the altered
tability conditions experienced by the ions in the presence of
ipolar excitation.

Fig. 1 is a plot of the escape velocity versus qz. The escape
elocity plots have been generated by assuming an ideal Mathieu
quation with an additional force term, the equation having the
orm

d2z

dτ2 + (az + 2qz cos 2τ)z = F cos
2ω

Ω
τ (10)

The plots have been made along the az = 0 axis for an ion
rap in which the central ring electrode has a radius of 7 mm. The
rive frequency, Ω, has been assumed to be 1 MHz and dipolar
xcitation frequency, ω, has been fixed at 100 kHz correspond-
ng to a qz value of 0.2829. The initial position and velocity
f the ions, in our simulations, have been chosen as 0 m and
.0001 m/s, respectively. This initial velocity is sequentially in-
remented in our computations and maximum ion amplitude,
or a specified integration time, is estimated. The velocity that
auses ion amplitude to just reach the trap boundary is taken

o be the escape velocity of the ion at the chosen qz [15]. The
scape velocity plots in the absence of dipolar excitation (i.e.,
hen F = 0), as well as in the presence of force, F, correspond-

ng to dipolar excitation amplitude, Vs, of 100 and 200 mV, are

ig. 1. Escape velocity vs. qz. (1) Unforced equation, (2) Vs = 100 mV, (3)

s = 200 mV.
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w

T

w
W

x

w

X

Mass Spectrometry 261 (2007) 159–169 161

resented in this figure. From Fig. 1 (curve 2), it can be noted
hat when an excitation voltage of 100 mV is applied, there is a
ecrease in the escape velocity compared to the escape velocity
n the absence of dipolar excitation (curve 1) at the selected qz.

hen the excitation voltage is increased to 200 mV the escape
elocity reduces to zero, implying that any ion encountering this
ondition will be unstable and will escape from the trap. Curve 2
orresponds to the condition generally used in collision induced
issociation studies and curve 3 is the condition maintained in
esonance ejection experiments.

. Analytical treatment

We now return to the Duffing equation (Eq. (5)). In order to
tudy the response of the system to variations in damping, non-
inearity, forcing amplitude and frequency we need to derive an
nalytical expression which captures the dynamics of the sys-
em. In the context of the Duffing oscillator, several perturbation
echniques have been explored in the mathematical literature.
he Lindstedt–Poincaré method and the method of harmonic
alance yield only steady state solutions and in our context will
ot provide an insight into ion dynamics. Two other techniques
hich can provide us both the transient as well as steady state

esponse are the method of averaging and method of multiple
cales. In our study we have used the method of multiple scales
16–19] to derive the relevant slow flow equations. We assume
hat the coefficients μ, α3, and F are small. To characterize the
mallness of these coefficients, Eq. (5) may be modified as [17]

d2x

dτ2 + x = ε

(
−2μ

dx

dτ
− α3x

3 + F cos ντ

)
(11)

here ε is a book keeping parameter. It is also assumed here that
he perturbed frequency is close to the natural frequency of the
deal system (in our case ν = 1) and can be represented as

2 = 1 + εδ (12)

here δ is a detuning parameter. In resonance ejection experi-
ents when the rf amplitude is ramped, we may consider δ to

e a function of slow time, T1, and write

= δ(T1) (13)

here T1 = ετ (discussed below).
Substituting Eq. (12) in Eq. (11) we get

d2x

dτ2 + ν2x = ε

(
δx − 2μ

dx

dτ
− α3x

3 + F cos ντ

)
(14)

In the method of multiple scales we define

0 = τ, T1 = ετ, · · ·
here T0 is the fast time scale and T1, . . . are slow time scales.
e assume the solution to Eq. (14) to have the form
(τ) = X(T0, T1, . . .) (15)

here X is assumed to have a form

(T0, T1, . . .)=X0(T0, T1, . . .)+εX1(T0, T1, . . .)+ · · · (16)
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Further details are summarized in Appendix A. The net result
s

≈ A cos ν τ + B sin ν τ (17)

nd we get

˙ = 1

8ν
(−8μAν − 4δ(τ)B + 3α3A

2B + 3α3B
3) (18)

˙ = 1

8ν
(−8μBν + 4δ(τ)A − 3α3AB2 − 3α3A

3 + 4F ) (19)

y putting ε = 1. Eqs. (18) and (19) are the slow flow equations
rom which we can determine the fixed points of the system. It
an be observed that Ȧ and Ḃ are dependent on the damping
μ), nonlinearity (α3) and forcing (F) as well as the detuning
δ). We will be using these equations to generate phase portraits
o understand the mechanism of destabilization in resonance
jection experiments.

.1. Numerical verification

The validity of the slow flow equations obtained above (Eqs.
18) and (19)) to describe the behavior of the original system
ill be verified by two calculations. In the first, for a given point
n the phase portrait, slow changes in the amplitude predicted
y the slow flow will be compared with the variation in the
mplitude obtained by the integration of the original equation
Eq. (5)). In the second, we compare amplitude response curves
btained from the slow flow equations and the original equation.

The slow flow equations (Eqs. (18) and (19)) are two first
rder differential equations in the state variables A and B. The
ime evolution of the solution of the slow flow equations (which
s related to the motion of ions) from any initial point can be
lotted as a curve on the A–B phase plane and is called a trajec-
ory. A number of such trajectories plotted together is called a
hase portrait [20,21]. To generate phase portraits we integrate
he slow flow equations for a large number of arbitrarily chosen
nitial conditions and plot B against A in each case on the same
raph.

Fig. 2(a) presents the phase portrait obtained from the slow
ow at ν = 1.2 (δ = 0.44) for an undamped condition for an ion
f mass 78 Th, an excitation voltage amplitude of 500 mV and
or +5% octopole (f) superposition. The slow flow equations are
ntegrated repeatedly for several different initial conditions and
hase portraits are generated by plotting A on the x-axis and B
n the y-axis. We present this phase portrait in Fig. 2(a) which
isplays two stable equilibria (centers) marked X and Y, and an
nstable equilibrium (saddle) marked Z.

For generating the time response plot (Fig. 2(b)) we choose
nitial conditions A = −1.091 and B = 0.3146 corresponding
o the point P close to the saddle in Fig. 2(a). For plotting the
ime response of the original equation we use Eq. (17) to ob-
ain the corresponding initial conditions as x(0) = −1.091 and
˙(0) = 0.3775. From the phase portrait it can be seen that the

rajectory first goes around the low amplitude solution before it
wings around the larger amplitude solution. This behavior is
eflected in the time response plots in Fig. 2(b). In Fig. 2(b) we
lso superimpose the variation in amplitude, R = √

A2 + B2,

s
f
e
f

s = 500 mV, α3 = 0.4, μ = 0. (b) The time response from the original equation
nd amplitude from the slow flow for the initial condition corresponding to point
on the phase portrait.

btained by integrating the slow flow equations, as a heavy line.
his comparison bears out the validity of the slow flow in ap-
roximating the behavior of the original equation.

Note that although the analysis is formally valid for very small
and α3, the final match is good even for somewhat large values

ike δ = 0.44, α3 = 0.4. For smaller values of these parameters,
he match will be better.

The phase portrait generated in Fig. 2(a) was for an undamped
ystem and consequently the stable solutions appear as centers
n the A–B phase space of Eqs. (18) and (19). In the presence of
buffer gas (damping), when μ > 0, the trajectories in the A–B
hase space will eventually settle to one of the fixed points, as
hown in Fig. 3.

A second verification of the accuracy of the slow flow to de-
cribe our original system is studied through amplitude response
urves. An amplitude response curve obtained from the original
onlinear equation (Eq. (5)) is compared with the curve obtained
rom the slow flow (Eqs. (18) and (19)) in Fig. 4. These curves are
enerated for an ion of mass 78 Th, pressure of 0.1 Pa, an excita-
ion voltage amplitude of 500 mV and for +5% octopole super-
osition. The amplitude response curve of the original equation
s generated by a simple numerical arc-length based continu-
tion method used by Nandakumar and Chatterjee [22] and is

hown by the continuous curve. For obtaining the amplitudes
rom the slow flow we use R = √

A2 + B2, where A and B are
quilibrium values of the first order slow flow equations for dif-
erent values of ν. The values obtained are indicated by ‘∗’. The
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rap boundary is indicated by a horizontal line at R ≈ 0.71 cor-
esponding to z0/r0. The amplitudes determined from the slow
ow equations closely match those obtained from the original
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These curves also display the well known jump event ob-
erved in systems with cubic nonlinearities [17,23,24]. Jumps
re known to occur at the vertical tangents to these curves. In
he context of resonance ejection experiments, in the forward
can, at the vertical tangent in the neighborhood of M (Fig. 4),
he solution jumps from the lower curve towards the amplitude
etermined by the upper curve (this has also been pointed out by
akarov [10]) and ions get detected at the trap boundary at this
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Also shown in Fig. 4 is the amplitude response curve for larger
s, to demonstrate that the magnitude of the jump depends on the
pplied excitation voltage Vs. A larger Vs results in a larger jump
see dotted curve in Fig. 4, made for Vs = 1.5 V). Since very
mall Vs will not make the ion amplitude jump across the trap
oundary, a minimum Vs is required for obtaining a spectrum in
he forward scan.

. Results and discussion

It needs to be pointed out that Eq. (5), the Duffing equation,
as developed using the pseudopotential well approximation
hich is valid only for qz < 0.4. In that sense the results we
resent below are useful only within this range. However, since
he discussion we present is qualitative in nature we hope this

ay provide an insight into resonant ion dynamics even at higher
z values.

As an aside, we point out that the Duffing equation has on
ccasion been seen to provide useful quantitative information at
alues of qz greater than 0.4. An example of this is the study of
akarov [10] who used a Duffing equation to develop expres-

ions for line width and resolution which provided very good
atches with experimental results at qz = 0.86.

.1. Phase portraits

We now turn to investigate coherence. For this, we first
resent the phase portraits derived from the slow flow equa-
ions in the region close to resonance. Fig. 5 presents the phase
ortraits at two different values of ν on the amplitude response
urve. These plots have been made for a mass of 78 Th, ex-
itation voltage amplitude of 500 mV and for +5% octopole
uperposition in the absence of damping.

Fig. 5(a) has been plotted for ν = 0.8 corresponding to
= −0.36. At this detuning, there exists only one (stable) equi-

ibrium point1 corresponding to the upper curve of the amplitude
esponse plot. Fig. 5(b) has been plotted for ν = 1.2 correspond-
ng to δ = 0.44. At this detuning, three equilibrium points exist,
f which two are stable and the third is unstable. The phase
ortraits for better understanding, cover amplitudes much larger
han the trap dimension. Actually, for Fig. 5(b), the trap physi-
ally restricts ion motion amplitudes and so all ion motions are
lose to the point X. Similarly for Fig. 5(a), ion motion is close to
he unique periodic solution. In the presence of damping, more-
ver, all solutions will settle on to the respective equilibrium
oints (periodic solutions in terms of the original variable z).

Six more thumb-nail phase portraits are presented in Fig. 6
orresponding to different ν values. Of these, (a) and (b) corre-
pond to regions where the value of ν is smaller than the ν value

t the jump point; (c) corresponds to ν value at the jump point
nd (d), (e) and (f) are the plots for higher ν values. We empha-
ize that these phase portraits are for zero damping as well as
ix independently fixed values of δ.

1 An equilibrium of the slow flow represents a periodic solution in the original
variable.
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Fig. 5. Phase portraits of the system (Eqs. (18) and (19)) for Vs = 500 mV, α3 =
0.4, μ = 0 (no damping) at (a) ν = 0.8 (δ = −0.36) (b) ν = 1.2 (δ = 0.44).
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Fig. 6. Amplitude response plots and phase portraits plotted at (a) ν = 0.
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In the phase portraits, at large ν there are three equilibrium
oints. We have shaded an area of the phase space enclosed
y a homoclinic orbit. All trajectories in this area are closed
urves representing periodic solutions in A and B (and peri-
dically modulated solutions in the original variable z). In the
resence of damping, essentially all of these solutions will set-
le to equilibrium solution in the middle of the shaded region
amplitude corresponding to the lower curve of the amplitude
esponse plot). As δ varies quasistatically, from a high value
o lower values (implying ν varies from higher values to lower
alues), the area of the shaded region decreases. At the jump
oint, the area of the shaded region has gone to zero and for
n infinitesimally smaller δ the phase portrait displays a single
eriodic solution with an amplitude corresponding to the upper
urve of the amplitude response plot.

In contrast, phase portraits (a) and (b) in Fig. 6 do not display
ny qualitative change in structure.

.2. Mass resolution

There are some interesting characteristics associated with the
ump point which provide an insight into the improved resolu-
ion observed in forward scan experiments. One feature has been

resented in the discussion above in relation to Fig. 6, namely,
t the jump point ions of the same mass, having different initial
onditions at the start of the experiment, have the same ampli-
ude and these ions eject from the trap simultaneously. Another

8, (b) ν = 1.0, (c) ν = 1.08, (d) ν = 1.09, (e) ν = 1.1, (f) ν = 1.2.
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eature of this curve can be seen in Fig. 7 which has been plotted
or identical experimental conditions for two different masses,
8 Th and 79 Th. In Fig. 7(a) the frequency response curves
ppear to be indistinguishable but the clear separation of the
urves is evident in Fig. 7(b) which shows a magnified view of
portion near the jump point of Fig. 7(a). Here, the jump points
orresponding to the two masses are labelled J78 and J79. This
eparation determines the ultimate resolution achievable by the
ass analyzer. In practice, however, the resolution will be de-

ermined by the actual spread in amplitude of the two adjacent
asses at the time of jump and, this in turn, will be influenced

or a given pressure of the bath gas, by the scan rate.

.3. Damping, scan rate, and coherence

So far, we have studied the phase portrait with δ = constant
no scan rate) and in the absence of damping. Consider, now,
he effect of some damping: it merely causes trajectories within
he shaded regions drawn in Fig. 6 to collapse on to the equilib-
ium point (we ignore delicate issues in resolving what happens
o trajectories very close to the original homoclininc orbit, as
orderline cases will at most involve a few ions only). As will
e seen in the numerical simulations below, the magnitude of
amping will determine this rate of collapse and thus will influ-

nce resolution in both the forward as well as reverse directions.

Let us now turn to scan rate. Suppose, in addition to damping,
here is a very slow but nonzero scan rate. The damped trajec-
ories still have enough time to collapse on to the equilibrium

J
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oint and then quasistatically follow the equilibrium point as it
oves along the appropriate branch of the amplitude response

urve (upper or lower, depending on whether it is a reverse or
orward scan, respectively). These trajectories therefore remain
ffectively phase locked with the forcing; all of them have ef-
ectively the same amplitude and phase, i.e., the ion motions
ill be coherent; and all are ejected and detected virtually at the

ame instant, giving good resolution in the spectrum in both di-
ections. However, in traditional resonance ejection experiments
uch extremely slow scan rates have not been used since very
low scan rates will result in large time delays before detection
f high mass ions and this will lead to deterioration of the quality
f the spectrum.

Imagine, therefore, we increase the scan rate. There is now a
ore complex dynamics associated with the ion trajectories (as
ay be seen by studying the slow flow with a time-varying δ,

omething we avoid here to maintain focus on the issue of pri-
ary interest). Analytically elucidating this complex dynamics
ould require sophisticated analysis not attempted here; rather,
e will use direct numerical integration to elucidate these phe-
omena in the next section. Here, we present a simple linearized
nalysis near the periodic solutions which shows that the ap-
roach towards the coherent motion is faster during forward
can compared to reverse scan.

Defining Θ =
(

A

B

)
, Eqs. (18) and (19) can be written as

˙ = f (Θ) (20)

here

(Θ) =
(

f1

f2

)

=

⎛
⎜⎝

1

8ν
(−8μAν − 4δ(τ)B + 3α3A

2B+3α3B
3)

1

8ν
(−8μBν+4δ(τ)A − 3α3AB2 − 3α3A

3+4F )

⎞
⎟⎠

(21)

Let Θ∗ =
(

A∗

B∗

)
be a fixed point (with δ held constant) of

he above system, i.e., f (Θ∗) = 0. For any perturbation about
he fixed point Θ∗, Θ = Θ∗ + ξ, we have [25]

˙ ≈ Jξ (22)

here J is the Jacobian of f (Θ) given by

=

⎛
⎜⎝

∂f1

∂A

∂f1

∂B
∂f2

∂A

∂f2

∂B

⎞
⎟⎠ (23)

From Eq. (21) we get the Jacobian at Θ∗ as
= 1

8ν

−8μν + 6α3A
∗B∗ −4δ+9α3B

∗2+3α3A
∗2

4δ − 3α3B
∗2−9α3A

∗2 −8μν − 6α3A
∗B∗

(24)
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Fig. 8. Time trajectories in the forward scan for initial conditions (a) (0.1, 0) and
(b) (0.25, 0), in the absence of damping. ν0 = 3, γ = −0.0005. The trajectories
f
p
c

s
i

ν

a

θ

W
r

γ at 0.0005. Figs. 8 and 9 are plots for forward and reverse
scan, respectively, for no damping. Figs. 10–12 are the plots for
damping corresponding to He bath gas pressure of 0.1 and 1 Pa,
respectively. In all these figures subplot (a) corresponds to initial
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he real part of the eigenvalues of the Jacobian will determine
he rate of approach of (A, B) to the fixed point (A∗, B∗). The
haracteristic equation of J is

2 − tr(J)λ + det(J) = 0 (25)

nd so

= tr(J) ±
√

(tr(J))2 − 4det(J)

2
. (26)

ssuming low damping, solutions will spiral into (A∗, B∗),
herefore λ is complex. The real part of λ is given by

tr(J)

2
= −16μν

16ν
= −μ (27)

ut

= c

2ω0z

= cν

ω
(28)

ince c and ω are constants in Eq. (28), the rate of approach of
mplitude of ion motion to the fixed point (A∗, B∗), is propor-
ional to ν. In the forward and reverse scan experiments, the ν

alues are close to each other, with ν being larger for the forward
can case. However, the small difference in ν values is amplified
y the larger times involved (many cycles of forcing). Therefore,
amping-induced coherence is greater for the forward scan.

Finally, consider the case where the scan rate is high enough
o be dynamically far more relevant than the damping. The qua-
istatic behavior referred to earlier eventually disappears. In such
ases, phase locking cannot be expected even in an approximate
ense and even in the forward scan direction there will be loss
f coherence in ion motion. This occurs primarily due to rate of
ecrease of amplitude due to damping being much smaller than
he scan rate thus resulting in ions not having sufficient time
o settle to the stable solution. This, too, will be numerically
tudied below.

.4. Numerical simulations

The numerical integration of the original equation (Eq. (5))
as been carried out to study the effect that damping and scan
ate have on the resolution in the two scan directions. This study
ill investigate the response of our system for two initial con-
itions, viz., (x(0), ẋ(0)) corresponding to (0.1, 0) and (0.25, 0).
n all the plots the y-axis corresponds to the nondimensionalized
mplitude. Ejection will occur at x ≈ 0.71 on this scale. Three
amping conditions have been considered and the scan rate is
ntroduced by expressing ν as

= ν0 + γτ (29)

here ν0 is the starting value of ν, γ is a dimensionless number
kin to the scan rate and τ is dimensionless time. For forward
can the sign of γ is negative and we fix ν0 as 3 and for reverse
can γ is positive and ν0 is chosen as 0.1.

The abscissa in these plots correspond to ν0 + 2γτ. We briefly

xplain this choice since in the amplitude response plots in Figs.
and 6, the abscissa is ν. To justify this change of independent

ariable we think of the forcing term F cos(ντ) in Eq. (5) as
cos(θ). Then the abscissa of the amplitude response curve

F
(
f
p
c

or the two initial conditions in the vicinity of the trap boundary (x ≈ 0.7) are
resented in (c). Light curve corresponds to initial condition (0.1, 0) and dark
urve corresponds to initial condition (0.25, 0).

hould really be θ̇, i.e., the rate of change of phase in the forcing
tself. During a scan, we have

= ν0 + γτ; ν̇ = γ, (30)

nd so

˙ = ν + ν̇τ = ν0 + 2γτ. (31)

e have, therefore, plotted ν0 + 2γτ on the abscissa of the time
esponse plots.

We first investigate the effect of damping. For this we fix
ig. 9. Time trajectories in the reverse scan for initial conditions (a) (0.1, 0) and
b) (0.25, 0), in the absence of damping. ν0 = 0.1, γ = 0.0005. The trajectories
or the two initial conditions in the vicinity of the trap boundary (x ≈ 0.7) are
resented in (c). Light curve corresponds to initial condition (0.1, 0) and dark
urve to initial condition (0.25, 0).



N. Rajanbabu et al. / International Journal of Mass Spectrometry 261 (2007) 159–169 167

Fig. 10. Time trajectories in the forward scan for initial conditions (a) (0.1, 0)
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Fig. 12. Time trajectories in the reverse scan for initial conditions (a) (0.1, 0)
a
f
p
c

e
d
f
t
t
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b
g
w

nd (b) (0.25, 0), He gas pressure 0.1 Pa, ν0 = 3, γ = −0.0005. The trajectories
or the two initial conditions in the vicinity of the trap boundary (x ≈ 0.7) are
resented in (c). Continuous curve corresponds to initial condition (0.1, 0) and
∗’ to initial condition (0.25, 0).

ondition (0.1, 0), subplot (b) corresponds to initial condition
0.25, 0) and in subplot (c) we have provided the magnified
ortion of the plots in (a) and (b) where the amplitude of ion
otion crosses the trap boundary. The traces shown in Figs. 9, 11

nd 12 for large initial conditions are similar to those presented
y Franzen [26] to explain ejection delays caused by multipole
uperposition in mass selective ejection at the βz = 1 stability
oundary.

In the absence of damping, trajectories in Figs. 8 and 9 dis-

lay no coherence in both forward as well as reverse scan. Ions
ith two different initial conditions, at the start of the experi-
ent, encounter the trap boundary at different values of ν. The

ituation is dramatically altered in the forward scan in the pres-

ig. 11. Time trajectories in the reverse scan for initial conditions (a) (0.1, 0)
nd (b) (0.25, 0), He gas pressure 0.1 Pa, ν0 = 0.1, γ = 0.0005. The trajectories
or the two initial conditions in the vicinity of the trap boundary (x ≈ 0.7) are
resented in (c). Light curve corresponds to initial condition (0.1, 0) and dark
urve to initial condition (0.25, 0).

t
p
t
i

F
a
f
p
c

nd (b) (0.25, 0), He gas pressure 1 Pa, ν0 = 0.1, γ = 0.0005. The trajectories
or the two initial conditions in the vicinity of the trap boundary (x ≈ 0.7) are
resented in (c). Light curve corresponds to initial condition (0.1, 0) and dark
urve to initial condition (0.25, 0).

nce of 0.1 Pa He bath gas pressure. As anticipated from earlier
iscussions, motion of ions of two different initial conditions
all in step, and they have coherent motion at the approach to
he trap boundary. This is demonstrated by the indistinguishable
rajectories of the two different initial conditions shown in Fig.
0(c). In the reverse scan, at this pressure, there continues to
e lack of coherence as seen in Fig. 11(c). When the He bath
as pressure is further increased to 1 Pa, ion motion in the for-
ard scan continues to be coherent. Although the ion motion in
he reverse scan displays greater coherence at 1 Pa when com-
ared to the 0.1 Pascal case, there is still some separation in the
rajectories corresponding to the two initial conditions as seen
n Fig. 12.

ig. 13. Time trajectories in the forward scan for initial conditions (a) (0.1, 0)
nd (b) (0.25, 0), He gas pressure 0.1 Pa, ν0 = 3, γ = −0.0051. The trajectories
or the two initial conditions in the vicinity of the trap boundary (x ≈ 0.7) are
resented in (c). Light curve corresponds to initial condition (0.1, 0) and dark
urve to initial condition (0.25, 0).
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To investigate the effect of scan rate, we consider increased
can rate of γ = 0.0051, corresponding to He bath gas pressure
f 0.1 Pa. The time trajectories are presented in Fig. 13. From
comparison of Fig. 10 (which was plotted for γ = 0.0005)

nd Fig. 13 it is evident that increasing scan rate has the effect
f destroying coherence in the forward direction as has been
uggested in our earlier discussion.

. Conclusions

The motivation of this paper was to understand constraints on
he pre-ejection dynamics of ions in the forward and reverse scan
esonance ejection experiments. Both analytical and numerical
omputations have been carried out to understand the cause for
he variation in resolution of mass spectra observed in the two
can directions. For our analytical study, ion motion was mod-
lled as a damped, driven Duffing oscillator with positive cubic
onlinearity and, using the method of multiple scales, slow flow
quations were derived. These slow flow equations were vali-
ated using numerical simulations. Numerical studies have also
een carried out on the original Duffing equation to support our
ualitative conclusions obtained from the phase portraits.

First confining attention to the amplitude response curve (as
one by Makarov [10]) it was observed that the mechanisms
f ion ejection in the two scan directions are different. In the
orward scan experiment, as previously noted by Makarov, ejec-
ion occurs when the ions of a given mass encounter the jump
oint. At this point, a sudden change in amplitude of ions causes
hem to get ejected from the trap. In reverse scan experiment, we
oint out that ion ejection occurs not on account of any jump,
ut because ion amplitude grows steadily and reaches the trap
oundary.

We have, further, studied transient motions away from the
mplitude response curve. The role of both damping and scan
ate in bringing about coherence in ion motion in the two scan
irections has been presented. It is seen that increasing damp-
ng leads to coherent ion motion for both scan directions, and
ecreasing damping leads to loss of coherence. Similarly, very
ow scan rates result in coherent ion motion in both scan di-
ections and increasing the scan rate destroys the coherence in
oth directions. However, this effect is larger for reverse scan
ompared to forward scan. This is because the rate of settling of
ons to the periodic motion (coherence) is faster in the forward
irection compared to the reverse scan direction.

Finally, we briefly comment on the mechanism proposed in
he experimental study reported in Williams et al. [8]. In this pa-
er, they have used the fact that octopole superposition causes
he secular frequency of ions to be related to ion oscillation
mplitude. Thus in forward scan experiments, the ion secular
requency “runs into” the dipolar excitation frequency caus-
ng ejection compacted in time which results in spectra with
ood resolution. In reverse scan, as ion oscillation amplitude
ncreases, the secular frequency moves away from the dipolar

xcitation frequency resulting in spectra having poor resolution.
he mechanism we have proposed in the present study does not
xplicitly invoke this amplitude frequency relationship but in-
tead focuses on the constraints on pre-ejection dynamical states
Mass Spectrometry 261 (2007) 159–169

o explain the differential resolution. Nevertheless, a shadow of
he discussion in Williams et al. [8] may be seen in our discus-
ion in that in one direction a jump is encountered while in the
ther direction it is not.
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ppendix A. Details of multiple scales analysis

We present here the steps involved in the multiple scales anal-
sis of Eq. (11) given in Section 3. Having defined

0 = τ, T1 = ετ, . . .

he derivatives with respect to τ will become

d(·)
dτ

= ∂(·)
∂T0

+ ε
∂(·)
∂T1

+ O(ε2) (A.1)

d2(·)
dτ2 = ∂2(·)

∂T 2
0

+ 2ε
∂2(·)

∂T0∂T1
+ O(ε2) (A.2)

ubstituting Eqs. (16), (A.1), (A.2) in Eq. (14) and expanding
he cubic term, we obtain

∂2X0

∂T 2
0

+ ν2X0 + ε

[
∂2X1

∂T 2
0

+ ν2X1 + 2
∂2X0

∂T0∂T1
− δ X0

+ 2μ
∂X0

∂T0
+ α3 X3

0 − F cos(νT0)

]
+ O(ε2) = 0 (A.3)

ollecting the coefficients of ε0, ε in Eq. (A.3) we have

∂2X0

∂T 2
0

+ ν2 X0 = 0 (A.4)

∂2X1

∂T 2
0

+ ν2X1 = −2
∂2X0

∂T0∂T1
+ δ X0

− 2μ
∂X0

∂T0
− α3 X3

0 + F cos(νT0) (A.5)

e consider the general solution to Eq. (A.4) in the form

0 = A(T1) cos ν T0 + B(T1) sin ν T0 (A.6)

here A and B are arbitrary functions of slow time, T1. Substi-
uting Eq. (A.6) into Eq. (A.5) we get

∂2X1

∂T0
2 + ν2X1 − 2

dA

dT1
sin(ν T0) + 2

dB

dT1
cos(ν T0)

− δ A cos(ν T0) − δ B sin(ν T0) − 2μ A sin(ν T0)ν
+ 2μ B cos(ν T0)ν + 1

4
α3A

3 cos(3ν T0)

− 1

4
α3B

3 sin(3ν T0) + 3

4
α3A

3 cos(ν T0)
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+ 3

4
α3B

3 sin(ν T0) + 3

4
α3A

2B sin(3ν 0)

− 3

4
α3AB2 cos(3ν T0) + 3

4
α3A

2B sin(ν T0)

+ 3

4
α3AB2 cos(ν T0) − F cos(ν T0) = 0 (A.7)

q. (A.7) is a nonhomogeneous equation in X1. The terms in-
olving sin(νT0) and cos(νT0) will lead to secular terms (terms
hose amplitude grows with time) in the particular solution. In
rder to eliminate the secular terms from the solution we set the
oefficients of sin(νT0) and cos(νT0) to zero. When we do so we
et the following equations which are the slow flow equations
t O(ε) as

dA

dT1
= 1

8ν
(−8μAν − 4δ(T1)B + 3α3A

2B + 3α3B
3) (A.8)

dB

dT1
= 1

8ν
(−8μBν + 4δ(T1)A − 3α3AB2 − 3α3A

3 + 4F )

(A.9)

rom Eq. (A.1), we have

˙ = dA

dτ
= ∂A

∂T0
+ ε

∂A

∂T1
+ O(ε2) (A.10)

nd

˙ = dB

dτ
= ∂B

∂T0
+ ε

∂B

∂T1
+ O(ε2) (A.11)

ince the A and B are not functions of T0, we have

˙ = ε

8ν
(−8μAν − 4δ(τ)B + 3α3A

2B + 3α3B
3) (A.12)

˙ = ε

8ν
(−8μBν+4δ(τ)A − 3α3AB2 − 3α3A

3+4F ) (A.13)
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